The consulting network for Business, Environment and the Community they serve.
 

Introduction, continued…

The oil crisis of the 1970s started the search for new and innovative ways to create electricity; the viability of wind turbines for power generation was revisited. With the rising cost of fossil fuels and the perceived need to reduce the production of greenhouse gas emissions, wind has again been seen as a possible source of renewable energy. As a result, the last 20 years has seen a resurgence in research and development to design and construct efficient turbines to harness the wind for electricity generation. Indeed the world has been quick to embrace these new advances and, as a result, a plethora of wind farms have sprung up throughout the developed countries.

While scientists and engineers are expert at developing new technologies (machines), history records that the effects of such developments precedes any real understanding of the impact they will make on human society. Accordingly, there is frequent reticence to embrace new developments (technology) until a better understanding of the potential human impacts is obtained. A brief reference to the reaction of people in 1764 with the invention of the spinning jenny by James Hargreaves is but one example. The fear at this time was that the invention would put many people out of work. A more recent example would be the introduction of radio frequency communication devices: cell phones. While few could deny the enormous benefits of such technology, there is an increasing body of scientific evidence on the potential health effects associated with this area of the electromagnetic spectrum. The new field of Bioelectromagnetics is testament to those concerns and is currently regarded as one of the fastest growing disciplines in science.

The widespread proliferation of wind farms is being met with increasing resistance from communities as the negative effects of existing installations become apparent and filter through the public media. This Review is an attempt to put together a series of scientific papers that provide the reader with an understanding of the wider issues how wind farms affect their human neighbours.

While not exhaustive, every attempt has been made to assemble a series of Papers which address the major issues affecting society. No apology is made for the strong focus on sound and noise, as this constitutes the major concern raised by communities. While another significant objection is the aesthetics of these large industrial structures in the existing countryside, this aspect is far harder to address in terms of tangible, scientific affects on the physiology and well-being of residents. Beauty, as they say, is in the eye of the beholder. What is graceful and beautiful to one person may be anathema to another, being perceived as intrusive and hideous. This is not the case for sound and noise, which lends itself to more objective assessment.

Two Papers of this review are devoted to explaining aspects of community perception of wind farms. The main thrust however concentrates on the scientific impact of wind turbine technology on the biology and well-being of neighbouring communities. It is noted that a number of scientific papers and several books have recently become prominent, not the least of which is Dr. Pierpont’s book, Wind Turbine Syndrome.

Another significant component of the debate is the economic impact on the price of electricity in comparison to alternative, existing forms of generation. While there is no doubt that wind energy is free—in the sense that one does not need to dig it up and refine it before being able to use it—there is however, significant cost in harnessing this natural resource. Companies involved in the production of wind farms are quick to point to the advantages of using this natural, free form of energy, however there is now significant evidence to suggest that this is not quite as free as has been promoted.

Consulting Engineer, Bryan Leyland, has spent a significant amount of time analysing the actual economic reality of electricity generation from wind. His research has highlighted the expensive method of construction and the cost to maintain a working wind farm. The additional cost of extra transmission lines and the relatively low yield of output energy, due to the intermittent nature of the wind, has brought into serious question the economic viability of wind farms. A fact not understood by many is that for every megawatt of wind-generated electricity, the same amount of spare capacity from other generating sources (hydro, coal, gas turbine, nuclear) must be available in reserve. When the wind drops and output from the turbine farm slumps, this reserve must supply the missing electricity in seconds to spare the distribution grid from possible brownouts or power cuts. In this sense, some energy is being wasted as more traditional sources idle, not generating much power, but ever ready to fill the gap left by the unreliable wind. For these reasons, wind is certainly not a free source of power. One consultant stated recently that, in their opinion, we are probably 50 years away from developing viable forms of energy storage that will make the widespread use of wind farms an economically viable option for electricity generation.

Many economic and industry indicators suggest that the use of wind to generate electricity is here to stay, at least in the short term. While scientists continue to search for more environmentally friendly ways to generate power—electro-solar is still looking for high output, high efficiency systems—wind turbines have their place. If wind farms are here to stay we must understand their affect on people. The first section of this Review focusses on the possible negative health effects.

To understand the nature of the potential hazard, it is necessary to understand the nature of sound and the way it interacts with the human body. Dr. Daniel Shepherd takes on this task, providing a tutorial on the nature of the phenomenon and the method of interaction with human physiology. He makes the important point that, contrary to popular belief, we do not become used to noise (unwanted sound). To assume that someone can simply learn to accommodate a noise and ignore it is largely untrue. Dr Shepherd concludes that there is now convincing evidence in the literature that community noise causes annoyance, disrupts sleep, impairs children’s school performance and negatively affects cardiovascular health. It also impedes rest, relaxation and recreational activity.

The latest research indicates that nuisance noise from wind farms is associated with psychological distress, stress, difficulties with falling asleep and sleep interruption. Furthermore, it is very hard to predict how annoyance from noise will compromise the health of susceptible individuals by considering the physical properties of the noise. This surely raises red flags for both those setting noise standards and those involved with policing consents. On these issues alone it is clear that there must be far more care in the siting of any future wind farms and a better understanding of how to mitigate the noise and compensate the affected individuals. The age-old question still exists: when do the needs of the many outweigh the needs of the few?

Before we can answer this question, the substantial differences in human perception between individuals needs to be understood. Dr. Bob Thorne is an expert in such matters and carefully outlines the topic. The process of personal hearing is of great importance and Dr Thorne states that the complexity of our hearing processes illustrates the reasons why any two individuals can interpret sound differently. Not only may one person hear a sound while another does not, but that person may be greatly affected. If an inappropriate method of noise assessment— such as a simplistic, standardised measure like background noise level—is used to describe the potential effects of the noise predictions can be divorced from reality. If wind farms continue to proliferate, regulators and industry must work together to more carefully assess the potential hazards associated with a particular site and the possible affects on nearby residents.

 

previous          table of contents          next


Copyright of Papers and Intellectual Property of this document, and the physical devices or software described, belong to the respective authors or designers.